Installing and Configuring PC Components

Installing and Configuring PC Components

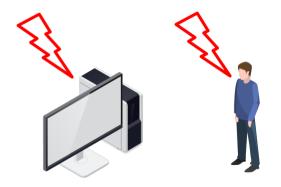
- Use Appropriate Safety Procedures
- PC Components
- Common Connection Interfaces
- Install Peripheral Devices
- Troubleshooting Methodology

Local Government Regulations

- Types of regulations:
 - Health and safety laws.
 - Building codes.
 - Environmental regulations.
- OSHA is a prime example of safety regulations for US-based operations.
 - Workplace free from recognized hazards.
 - Personal protective equipment.
 - Communication (labels, MSDSs, and hazmat training).
- Employers and employees both have responsibilities.
 - Employers provide a safe workplace.
 - Employee actions promote safety of themselves and others.

Health and Safety Procedures

- Identify what to do in an emergency.
- Identify responsible persons (first responders, etc.).
- Identify hazardous areas and what precautions to take.
- Describe best practices for use and care of workplace and equipment.
- Establish incident reporting procedures.


General Emergency Procedures

- Raise the alarm and contact emergency services.
 - Description of emergency.
 - Location of emergency.
- If possible, secure the scene.
 - Escape routes for fire situations.
 - Disconnect power for electrical shock situations.
- If you have training, try to start handling the incident.
 - Give first aid.
 - Use firefighting equipment.
- Keep calm, and don't act rashly!

Electrical Hazards

- Most prevalent physical hazard for IT equipment and personnel.
- For humans, electrical shock can cause:
 - Muscle spasms
 - Burns
 - Paralysis
 - Cardiac arrest
 - Collateral injuries
 - Death by electrocution
- Keep equipment away from conductors.
 - Metal
 - Liquid

Fuse: A circuit breaker designed to protect the device and users of the device from faulty wiring or supply of power (overcurrent protection).

- Electrical problems blow fuses to prevent further damage.
 - Separates a device from the power source.
- Ratings: 3A, 5A, 13A.
 - Most computer equipment is 3A or 5A.
 - Use fuses rated for the equipment.
- Power strips connect multiple devices to a power source.
 - Don't daisy chain them!
 - Total power draw should not exceed maximum load (12A).

Equipment Grounding (Slide 1 of 2)

Ground: A safe path for electrical current to flow away in the event that a device or cable is faulty.

- Creates a path of least resistance for electrical current to flow away and cause no damage.
- Ground achieved for most PCs by connecting the power cord to an electrical outlet.
- You might need to establish ground for equipment racks or other systems.

Equipment Grounding (Slide 2 of 2)

High Voltage Device Safety

- Most PC circuits are low voltage/low current.
- There are notable exceptions.
 - Power supplies.
 - CRT monitors.
 - LCD display inverter card.
 - Laser printers.
- Do not open units that are marked with High Voltage warnings unless you're specifically trained for servicing them.

Electrical Fire Safety

- When excessive current flows through a cable, the cable gets hot.
- Adjacent flammable materials could ignite.
- Use fire extinguishers designed for electrical fires.
 - CO₂ extinguishers with a black label are optimal.
 - Dry powder extinguishers can damage electronic equipment.
- Be sure to cut the power supply.
- Know where the master switches are for the buildings you work in.

Guidelines for Working Safely with Electrical Systems

- Be aware of risks and safety practices.
- Avoid repair work when you are not 100%.
- Don't assume—check things for yourself.
- Cut power to circuits before handling them.
- Press and hold the PC power button to dissipate residual power.
- Use a multimeter to check live parts for voltage.
- Use insulated tools and never grip tools by their metal parts.
- Never touch a circuit with both hands. (Hand in pocket rule.)
- Keep your hands and the surrounding area dry.
- Clean up spills and make sure you aren't walking on a wet floor.
- Avoid wearing jewelry or other items that hang from the neck or wrists.

Environmental Safety

Category	Description
Trip hazards	 Caused by objects being placed in pathways where people walk. Cables, boxes, furniture, etc.
Lifting and carrying risks	 Lifting heavy objects can cause back injuries. Dropped objects can cause leg or foot injuries. Bulky objects can also cause problems.

Toxic Waste Handling

- Contaminants can be:
 - Gaseous
 - Particulate
 - Organic
 - Poisonous
 - Corrosive
- Devices to be careful around:
 - CRT monitors
 - Batteries
 - Electronic devices (PCs, cell phones, and tablets)
 - Toner kits and cartridges

Guidelines for Working Safely Among Environmental Hazards (Slide 1 of 2)

- Secure cables with ties or other cable management products.
- Keep devices and other objects out of walkways and away from desk edges.
- Consider weight limitations as you lift or carry items.
- If necessary, use protective clothing.
- To lift heavy objects:
 - Plant your feet around the object with one foot slightly toward your destination.
 - Bend at the knees while keeping your back straight and chin up.
 - Get a firm grip and lift smoothly by straightening your legs.
 - As you carry the object, keep your back straight.

Guidelines for Working Safely Among Environmental Hazards (Slide 2 of 2)

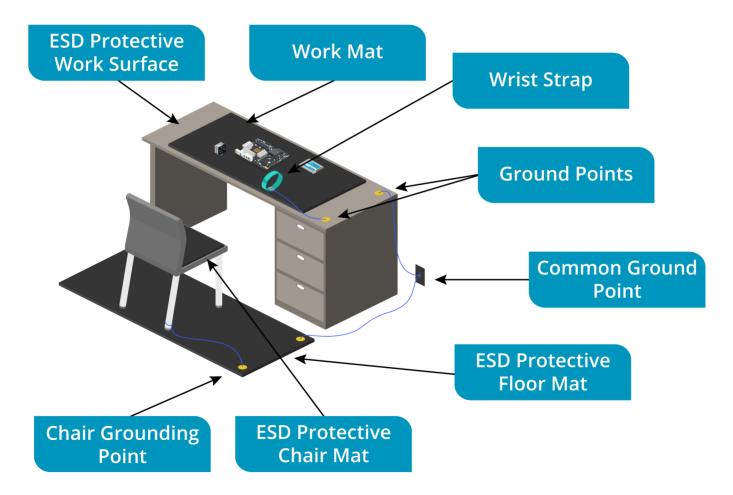
- To lower heavy objects, reverse the lifting process. Don't trap your fingers or lower the object onto your feet.
- Ask a colleague for assistance or use a cart for bulky or excessively heavy items.
- To work with toxic materials:
 - Don't disassemble or stack CRT monitors.
 - Use gloves and goggles when working with corrosive materials.
 - Use air filter masks when working with toner.

Electrostatic discharge (ESD): A situation that occurs when electrons rush from one statically charged body to another with an unequal charge, following the path of least resistance.

- Caused by excessive static electricity.
- High voltage, but low current.
 - Less dangerous to humans than to electronics.
 - People feel ESD at 2,500V; equipment can be damaged by as little as 100V.
- ESD generators:
 - Synthetic clothing.
 - Low humidity.
 - Cooler temperatures.

Component Handling (Slide 1 of 3)

Self-grounding: The act of touching a grounded object before touching electronic equipment.


- Using ESD wrist or leg strap.
 - More effective than self-grounding.
 - Use the grounding plug or clip to attach to a ground point.
- Using ESD service mats or smocks.
- Using antistatic bags.

Component Handling (Slide 2 of 3)

CompTIA.

Component Handling (Slide 3 of 3)

Guidelines for Protecting Components from ESD Damage

- Use proper component handling and storage procedures whenever you are performing PC maintenance work.
- To protect components and equipment from ESD damage:
 - Drain your body and clothing of static electricity before you start work.
 - If possible, work in an uncarpeted area.
 - The simplest (but least effective) means of self-grounding is to touch an unpainted metal part of the PC.
 - Try to handle vulnerable components by their edges, and avoid touching the surfaces of the chips themselves.
- Use ESD wrist or ankle straps and dissipative floor mats.

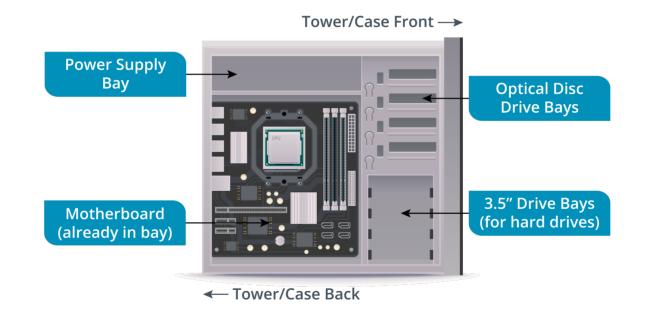
Activity

Implementing an Anti-ESD Service Kit https://www.youtube.com/watch?v=0GpOok2xRt0

CompTIA.

System Case (Chassis) Types (Slide 1 of 3)

—	


Desktop computer: A computing device designed to be placed on or near a user's desk.

System case/chassis: A plastic and metal box that houses components such as the motherboard, CPU, memory, adapter cards, disk drives, and power supply unit.

Tower case: A desktop computer designed to sit vertically on a surface, so that it is taller than it is wide.

- Tower case options:
 - Full tower: Gaming computers, 3rd party graphics cards, multi-thread CPU
 - Mid tower: Average users, room and slots for optional components
 - Mini tower: Limited space for internal devices and adapter cards
 - Slimline: Need low profile adapter cards (horizontal or vertical)

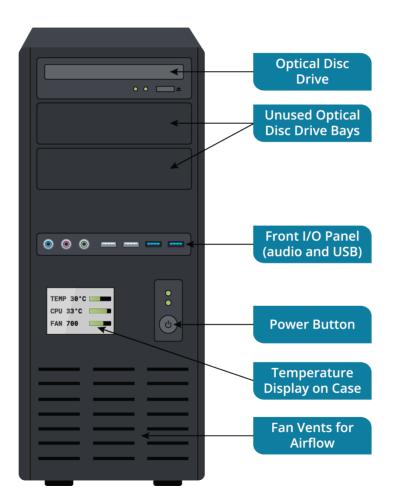
System Case Types (Slide 2 of 3)

System Case Types (Slide 3 of 3)

—	

SFF case: (small form factor) A case for motherboards and connectors that is designed to take up less space.

All-in-one unit: A desktop computer in which all the computer components, except the keyboard and mouse, are contained within the monitor case.

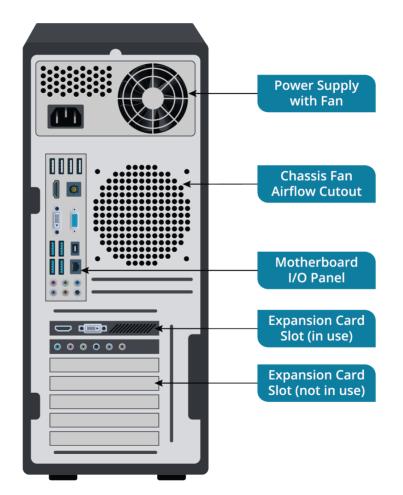


Parts of the System Case (Slide 1 of 4)

Cover: The removable portion of the system case that allows access to the motherboard and internal components. (usually one of the sides) **Front panel**: The portion of the system case that provides access to removable media drives, power switch, and LEDs to indicate driver operation.

Parts of the System Case (Slide 2 of 4)

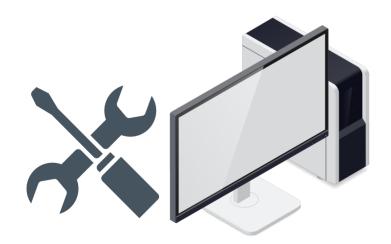
Parts of the System Case (Slide 3 of 4)

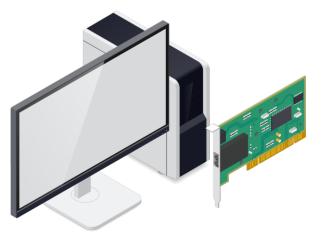


Rear panel: The portion of the system case with cut-out slots aligned with the position of adapter card slots.

Adapter card: Circuit board providing additional functionality to the computer system.

Blanking plate: Metal strips that cover unused adapter slots in the case so that proper air flow is maintained within the system case.


Parts of the System Case (Slide 4 of 4)



Repair or Replace?

Field replaceable unit (FRU): An adapter or other component that can be replaced by a technician on-site. Most PC and laptop components are FRUs, whereas the components of smartphones are not.

- Not all components are considered FRUs.
- More economical to swap out, or replace, with a new component.

Guidelines for PC Disassembly

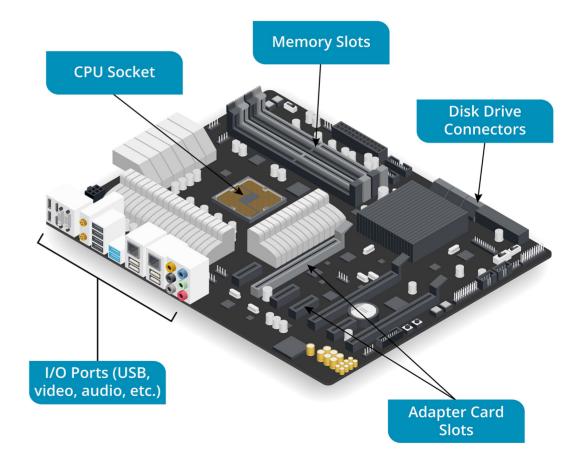
- Back up all data stored on the internal drive(s).
- Create a clean work environment where you can work comfortably.
- Gather all necessary tools and equipment.
 - Notepad and pen
 - Digital camera
- Make sure that all devices are powered off and unplugged from the building power before disconnecting them.
- Take anti-static precautions.
 - Place static-sensitive components (CPUs and RAM) in anti-static bags.

Motherboards

_
_
_
_

Motherboard: Provides the basic foundation for all of the computer's hardware, including the processor, RAM, firmware, and expansion cards. Also referred to as **mobo, system board,** or **main board.**

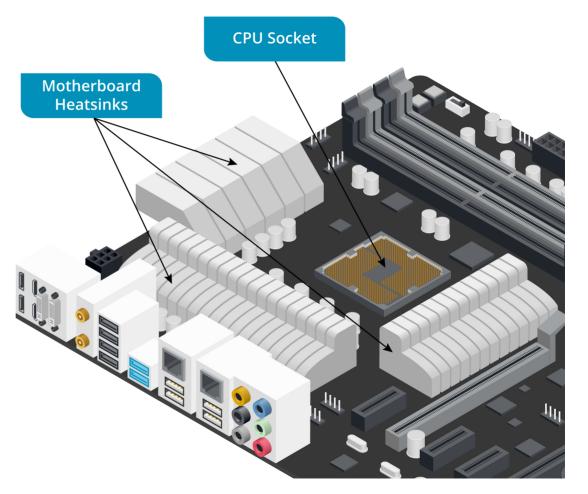
- Motherboard type dictates speed and upgrade capabilities.
- Standoffs hold the motherboard in place within the system case.
 - Brass or plastic.



Motherboard Form Factors

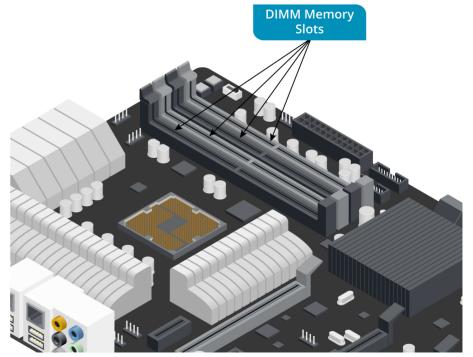
Form Factor	Description
ΑΤΧ	 Developed in 1995 to replace legacy AT form factor. 12 by 9.6 inches, 305 by 244 mm. Up to seven expansion slots.
Micro-ATX	9.6 inches (244 mm) square.Up to four expansion slots.
Mini-ITX	 Used in SFF PCs. 6.7 inches (170 mm) square. One expansion slot.
Other ITX-based form factors	Smaller than mini-ITX.Used for embedded systems and portable computers.

Motherboard Connector Types


- Base set of connectors for CPU, memory, disk drives, peripherals, etc.
- Type and number depend on the motherboard model.

CompTIA.

CPU Sockets


- Socket type depends on CPU manufacturer.
- Usually a square socket near the memory banks.
- Often covered by a heatsink and fan.

Memory Slots

Random access memory (RAM): The principal storage space for computer data and program instructions. Volatile memory that loses data when there is no power.

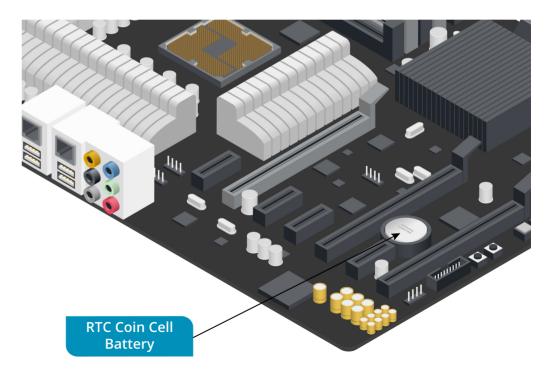
- Volatile memory.
- Normally packaged as DIMMs.

Chipset and Memory Architecture

Chipset: Provides communications between different components by implementing various controllers.

- Controller types:
 - System memory.
 - I/O.
 - Integrated video, sound, and network interfaces.
- Chipsets are not upgradeable.
- CPU/memory link determines performance.
 - Northbridge/Southbridge is legacy architecture.
 - Different architectures now used, including on-die controllers.

CMOS and RTC Batteries (Slide 1 of 2)


Complementary metal-oxide semiconductor (CMOS): A type of integrated circuit with a wide range of applications, including static RAM (for firmware and flash memory) and imaging sensors.

- Holds basic configuration information.
- Stores system firmware setup program settings.
- RTC stands for Real Time Clock

CMOS and RTC Batteries (Slide 2 of 2)

CMOS battery: Battery that powers the chipset that keeps track of date and time for the system. Also referred to as **RTC battery** or **clock battery**.

- Normally last 5 to 10 years.
- Powers the RTC, which keeps track of the system date and time.

39

Bus Architecture

Bus: Connections between components on the motherboard and peripheral devices attached to the computer.

Traces: Wires etched on to the motherboard to provide electrical pathways.

- Carries electronic signal along the motherboard.
 - Information being processed (data) and information about where data is located (address).
 - Power to components.
 - Timing signals for synchronizing data transfer.
- Usually refers to the expansion bus.

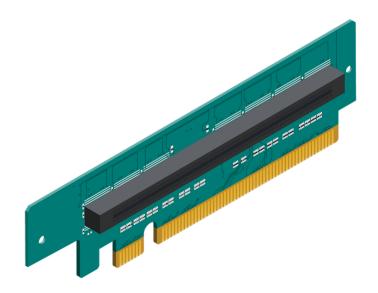
Internal and External Buses

Local bus: The internal bus that links components directly to the processor, resulting in the highest possible data speed as required by components such as the video display.

Expansion bus: The external bus that allows additional components to be connected to the computer.

- Internal bus connects core components.
- External bus connects peripherals. (Most common: Universal Serial Bus or PCI for pre-2004 computers, which are covered later)
 - Peripherals can be internal or external, too.
 - The bus can extend beyond the system case, but not always.

Expansion Slots (Slide 1 of 2)


Expansion slot: Connection slots on the motherboard in which adapter cards can be installed to extend the range of functions the computer can perform.

- Multi-bus design allows different expansion slots on a motherboard.
 - More plug types = Support for older technologies.

Expansion Slots (Slide 2 of 2)

Riser card: A space-saving feature of some motherboards that puts the PC's expansion slots on a separate board installed at right angles to the main board, allowing system components to fit within a slimline case.

- Expansion slots parallel to the motherboard.
 - Saves space.

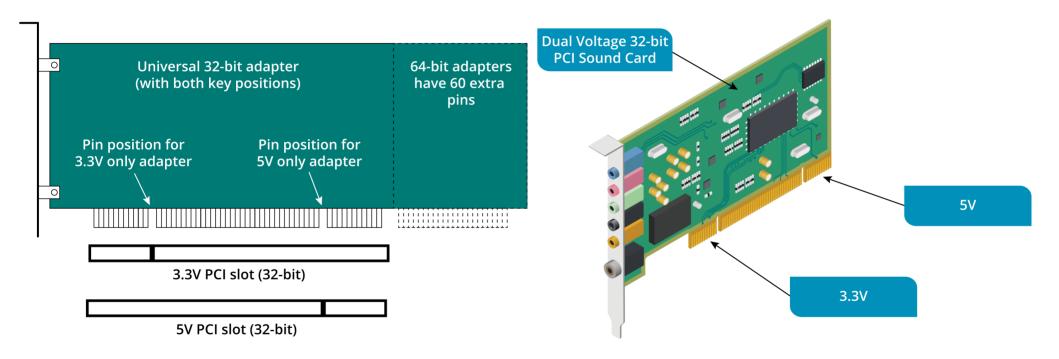
System Clock and Bus Speed

System clock: The computer's timing mechanism that synchronizes the operation of all parts of the computer and provides the basic timing signal for the CPU.

- Clock speed measured in megahertz (MHz) or gigahertz (GHz).
 - Hertz are the number of times a CPU processes per second
 - May be faster or slower than actual **throughput** speed (Mbps, etc.). USB signals good example.
- Clock generator initiates timing signal.
- Clock multipliers adjust timing signal for different buses.

PCI Bus (Slide 1 of 3)

	_
	- 1
	_
	- 1
	_
	- 1
	-


Peripheral Component Interconnect (PCI) bus: Introduced in 1995, it connects the CPU, memory, and peripherals. It supports bus mastering (direct memory access), IRQ steering (interrupt requests for resource prioritization), and Plug and Play (PnP). 32-bit works at 33 MHz. 64-bit works at 66 MHz.

- Slowly being replaced by PCI Express.
- First commercial version was 2.0.
 - Several revisions to the standard since then.
- Standards information: pcisig.com/specifications.

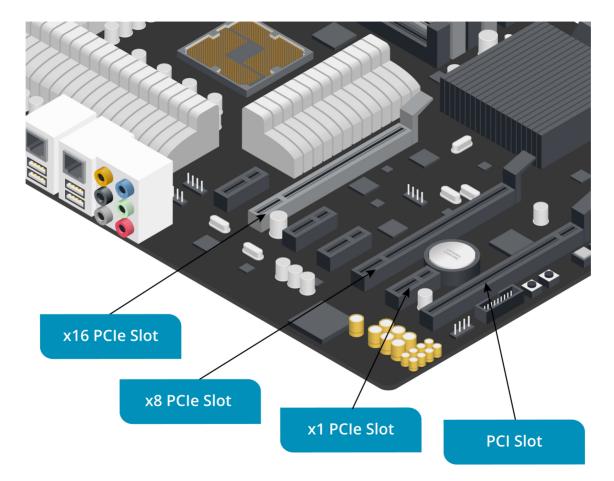
PCI Bus (Slide 2 of 3)

Feature	Description
Bus width and clock speed	 Supports up to 5 devices via Plug-and-Play. Shared bandwidth. Supports bus mastering. Architecture: 32-bit bus operating at 33.3 or 66 MHz (133 or 266 MBps). 64-bit bus operating at 33.3 or 66 MHz (266 or 533 MBps).
Adapter card and slot form factors	 5V, 3.3V, and dual voltage supported by different form factors and keying. 5V cards are keyed at pins 50 and 51. 3.3V cards are keyed at pins 12 and 13. Dual-voltage cards are keyed at both. 64-bit cards and adapters have 60 more pins. All PCI slots deliver up to 25W of power.

PCI Bus (Slide 3 of 3)

CompTIA.

PCI Express Bus (Slide 1 of 3)

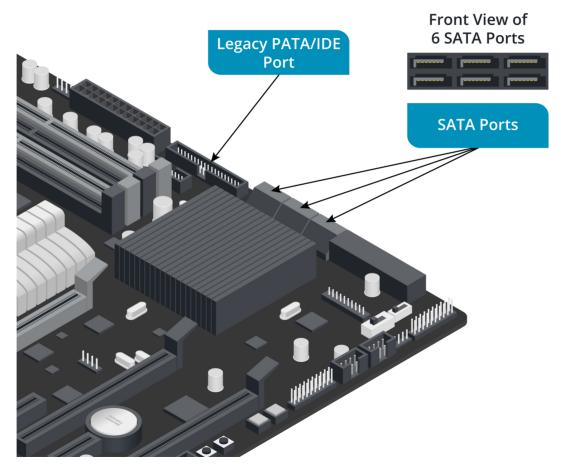

Peripheral Component Interface Express (PCIe) bus: Serial communication with point-to-point links between I/O controller and devices.

- Designed to replace PCI.
- Point-to-point serial communications for dedicated links (lanes) to all components.
- Switches make connections and provide QoS (for load balancing).
- Lanes are 2 sets of wire pairs—one pair for transmit, one pair for receive.
 - Each component supports a specific number of lanes.
 - Switch negotiates how many lanes to use (remember that QoS).
 - 250 MBps transfer rate.
- Software compatible with PCI.

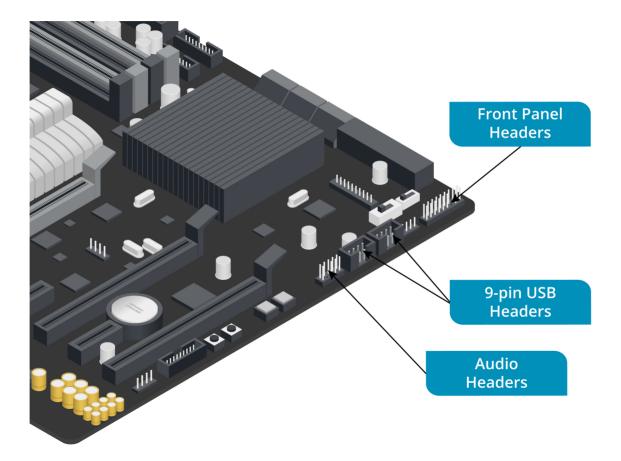
PCI Express Bus (Slide 2 of 3)

- Power features:
 - Up to 75W supplied per device via motherboard slot.
 - Another 75W available through a PCIe power connector.
 - Power management functions available.
 - Hot swap and hot plug adapters supported (swap while things are on)
- Versions:
 - PCIe 2: 500 MBps transfer rates possible.
 - PCIe 2.1: Power draw up to 150W, plus 150W via connector.
 - PCIe 3: Transfer rates near 1 GBps per lane.
 - PCIe 4: Transfer rates near 2 GBps per lane.
 - PCIe 5: In development; projected transfer rates near 4 GBps per lane.

PCI Express Bus (Slide 3 of 3)


More lanes = More bandwidth

Storage Bus (SATA and IDE) (Slide 1 of 2)


Storage bus: A special type of expansion bus dedicated to communicating with storage devices (hard drives or disk drives)

- Parallel ATA (PATA), IDE, and EIDE (legacy)
- SCSI.
- Serial ATA, or SATA:
 - Serial bus that is faster than PATA or SCSI.
 - Compact 7-pin connector.

Storage Bus (SATA and IDE) (Slide 2 of 2)

Other Motherboard Connectors (Slide 1 of 2)

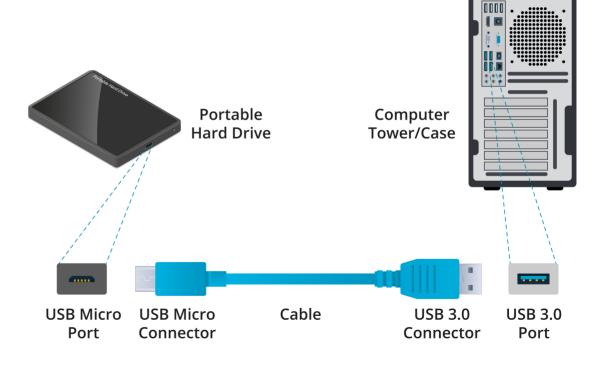
Other Motherboard Connectors (Slide 2 of 2)

Connector Type	Description
Front panel connectors	Power button.HDD activity lights.Audio ports.
Internal USB connectors	 1 or 2 USB ports on the front panel. Several USB ports on the back panel. 9-pin headers.
Power and fan connectors	 Power connector is usually a 24-pin white or black block. Fan connectors are smaller (1 for CPU, 1 for case fan). 3-pin Molex KK. 4-pin Molex KK. 4-pin Molex.

Activity

Interfaces, Ports, and Connections (Slide 1 of 2)

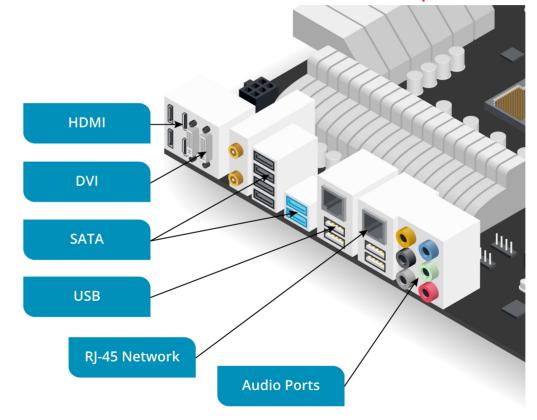
—	


Interface: The point at which two devices connect and communicate with each other.

Port: An input-output port essentially describes a device connection through which data can be sent and received.

Connection: The physical access points that enable a computer to communicate with internal or external devices.

Interfaces, Ports, and Connections (Slide 2 of 2)

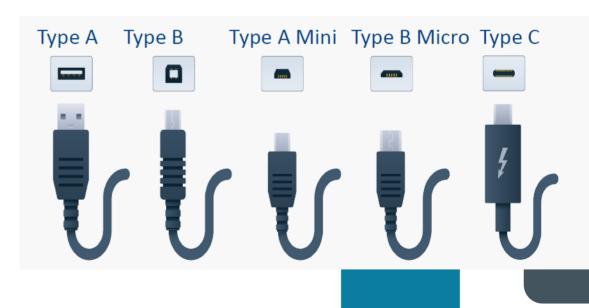

- Male and female ports.
- Keyed ports (can't be flipped arou
- Color codes for external ports.

I/O Ports and Cables

I/O port: A hardware connection interface on a personal computer that enables devices to be connected to the computer.

USB Connectors (Slide 1 of 4)

Universal Serial Bus (USB): A hardware interface standard designed to provide high performance connections for numerous peripherals with minimal device configuration.

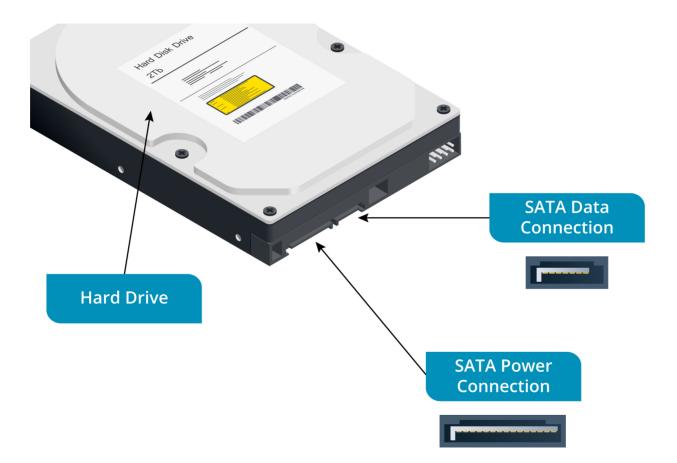

- Standard method for connecting peripherals.
- Bus is a host controller and attached devices.
 - Up to 127 devices.
- Devices are hubs or functions.
 - Hubs connect additional devices.
 - Functions are human interface, storage, printer, audio, etc.

USB Connectors (Slide 2 of 4)

- Standards:
 - USB 2.0: Data rate of 480 Mbps shared among all devices attached to a host.
 - USB 3.0:
 - SuperSpeed Mode provides bandwidth of 5 Gbps and a full duplex link.
 - Introduces dual subcontrollers to split SuperSpeed and legacy devices.
 - USB 3.1: SuperSpeed+ Mode provides bandwidth of 10 Gbps.
 - USB 3.2: 20 Gbps possible when using USB-C ports and cables.
- Power supplied by host:
 - USB 2: 2.5 W per device.
 - USB 3: 4.5 W per device.
- USB OTG

USB Connectors (Slide 3 of 4)

- Connectors and ports:
 - Type A (4-pin) connects to hosts.
 - Type B (4-pin) connects to devices. Includes B Mini and B Micro.
 - Type C connects to hosts and devices.
 - Cable length:
 - LowSpeed and SuperSpeed: 3 m.
 - FullSpeed and HighSpeed: 5 m.


USB Connectors (Slide 4 of 4)

Other

Port & Connector Type	Description
Thunderbolt	 Primarily used on Apple systems. Display or general peripheral interface. Lightning bolt icon. TB 2 supports links of up to 20 Gbps and allows up to 6 devices to a port. TB 3 uses same interface as USB-C.
Lightning	 Used on iPhone and iPad. Reversible connector. Restricted to mobile devices, so adapter cables needed to connect to a PC.
RD-232 and DB-9	 Connect to serial ports. Data rates up to 115 Kbps. Used for modems and network equipment. Can be 25- pin or 9-pin interface.

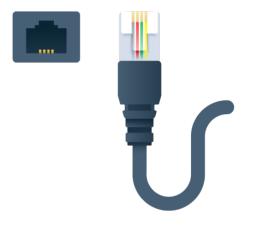
Storage Connector Types (Slide 1 of 2)


Storage Connector Types (Slide 2 of 2)

SCSI and Molex

Male Connector (68-pin)

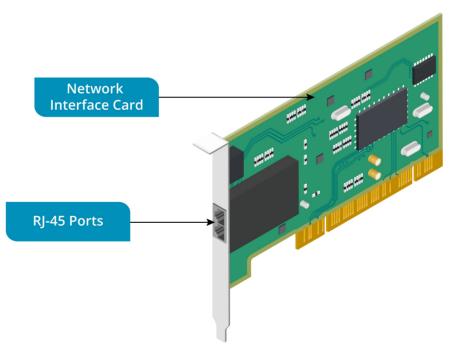
Female Port (68-pin)



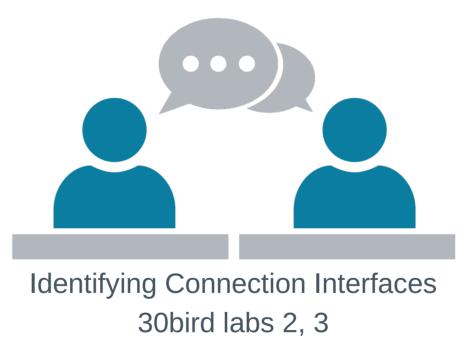
Network Connector Types

RJ-45 Port and Connector

RJ-11 Port and Connector



Expansion Cards



Expansion card: A printed circuit board that is installed in a slot on a system board to provide special functions for customizing or extending a computer's capabilities. Also referred to as adapter card, I/O card, add-in, add-on, or board.

- I/O adapters and storage cards
- NICs and adapters.

Activity

Activity

Demonstrating PC Disassembly and Reassembly

