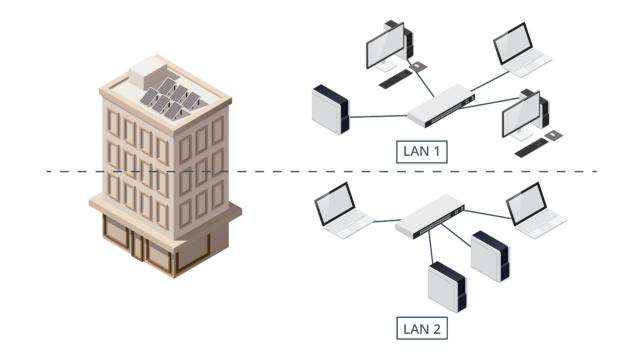
Network Infrastructure Concepts

Network Infrastructure Concepts

- Wired Networks
- Network Hardware Devices
- Wireless Networks
- Internet Connection Types
- Network Configuration Concepts
- Network Services

Network Types (Slide 1 of 4)

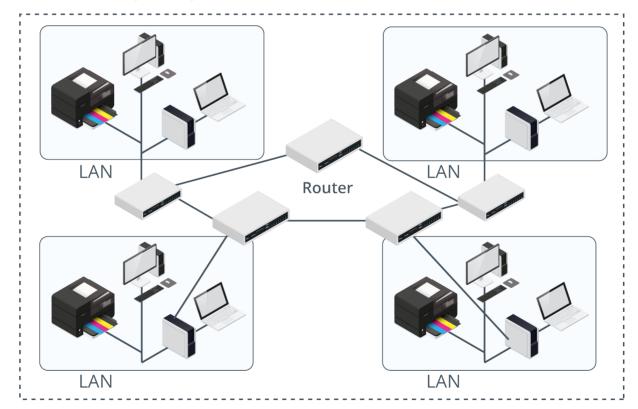


Network: In its most simple form, a network consists of two or more computers connected to each other by an appropriate transmission medium which allows them to share data.

- Purpose: provide services and resources to users
- Historically: files, folders, printers, email, databases
- Modern: web applications, social networking, VoIP, multimedia conferencing
- Types: LANs, WANs, MANs

Network Types (Slide 2 of 4)

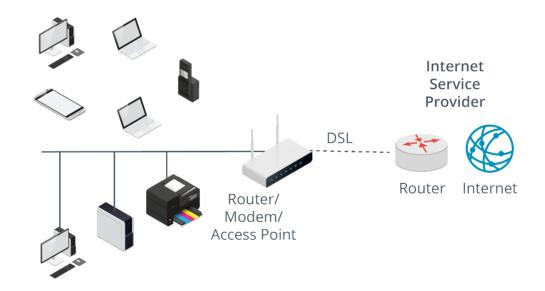
• LANs within a building


Network Types (Slide 3 of 4)

• A Wide Area Network (WAN)

Network Types (Slide 4 of 4)

A Metropolitan Area Network (MAN)

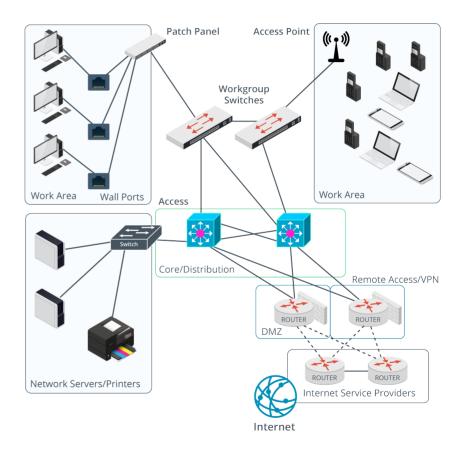


Ethernet Types and Standards

- Most cabled LANs build on Ethernet
 - Developed by DIX (Dec-Intel-Xerox) consortium
 - Maintained by IEEE (Electrical and Electronics Engineers) (called 802.3 standards)
- Types:
 - 10 Mbps (10BASE)
 - Fast Ethernet (100BASE)
 - Gigabit Ethernet (1000BASE)
 - 10G Ethernet (10GBASE)
- IEEE 802.11 standards (Wi-Fi) for WLANs are complementary to LAN standard
- Flexible, self-contained, scalable

Common Ethernet Network Implementations (Slide 1 of 3)

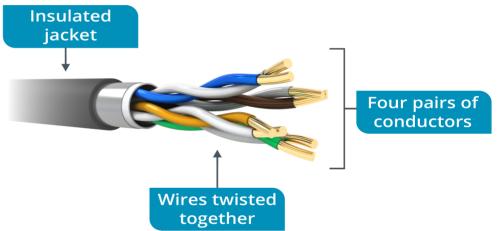
• SOHO: business network with server and clients, using single Internet appliance as access point, Ethernet switch, Internet modem, Internet router.



Common Ethernet Network Implementations (Slide 2 of 3)

- Enterprise network: usually dedicated single-function connectivity appliances.
 - Small and Medium (SME): tens of users; multiple switches, access points, routers.
 - Enterprise LAN: hundreds or thousands of servers and clients; multiple enterprise-class switches, access points, and routers.
 - Campus Area Network (CAN) = LAN spanning multiple nearby buildings.

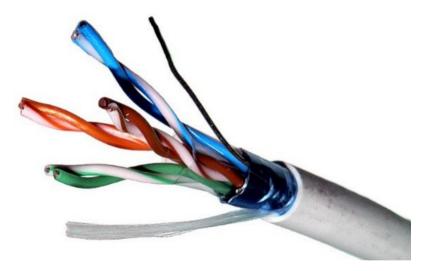
Common Ethernet Network Implementations (Slide 3 of 3)


 Positioning network components in an enterprise LAN

CompTIA.

Twisted Pair Cabling and Connectors (Slide 1 of 4)

- Unshielded Twisted Pair (UTP)
 - Most widely used
 - Four copper conductor pairs
 - Insulating sheath
 - Twisted to reduce crosstalk and EMI
 - Paired wires carry equal/opposite signals
 - PVC jacket
 - Works well in low interference; has limited range, may exhibit attenuation (loss of force)


Twisted Pair Cabling and Connectors (Slide 2 of 4)

• Cat standards:

Cat	Frequency	Capacity	Max. Distance	Network Applications
5	100 MHz	100 Mpbs	100 m (328 ft)	100BASE-TX
5e (min standard)	100 MHz	1 Gbps	100 m (328 ft)	1000BASE-T
6	250 MHz	1 Gpbs	100 m (328 ft)	1000BASE-T
6	250 MHz	10 Gbps	50 m (180 ft)	10GBASE-T
6A	500 MHz	10 Gbps	100 m (328 ft)	10GBASE-T

Twisted Pair Cabling and Connectors (Slide 3 of 4)

- Shielded Twisted Pair (STP)
 - Originally used braided shield to reduce interference and crosstalk; can be bulky, difficult to install.
 - Modern STP uses screened cables; shield positioned around all pairs.
 - Shielded Cat 53/6/6A:
 - F/UTP (also ScTP) all foil wrapped
 - U/FTP individual foil wrapped
 - Reduce crosstalk interference
 - Modern STP solutions incorporate grounding in each element.

Twisted Pair Cabling and Connectors (Slide 4 of 4)

Plenum: An air handling space, including ducts and other parts of the HVAC system in a building.

- Plenum space:
 - Typically a false ceiling, may be raised floor.
 - May be used for communications wiring.
 - Can be conduit for fire.
- General purpose non-plenum cable uses PVC; marked CMG/MMG or CM/MP
- Plenum cable:
 - Must not emit smoke, must self-extinguish, meet other fire safety standards.
 - Uses treated PVC or FEP; can be less flexible, does not affect bandwidth.
 - Marked CMP/MMP.

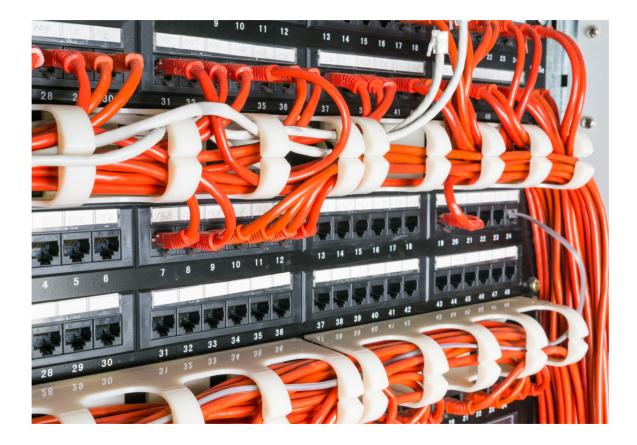
Wiring Standards for Twisted Pair (Slide 1 of 2)

- Ethernet twisted pair terminated with RJ-45• connectors:
 - 8P8C (8-position/8-contact)
 - Color-coded (Blue, Orange, Green, Brown)
 - 1st conductor in pair has white/stripes
 - 2nd conductor in pair is solid color

ANSI/TIA/EIA 568 termination standard for RJ-45:

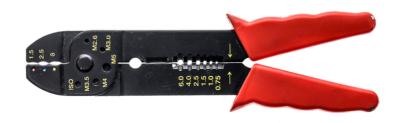
- T568A is shown
- T568B:
 - Pin 1=Orange/White; Pin 2=Orange; Pin 3=Green/White; Pin 4=Green

CompTIA.


Wiring Standards for Twisted Pair (Slide 2 of 2)

- Normal (straight-through) cable has same termination at both ends.
- Crossover cable has T568A at one end, T568B at other.
 - Previously used for direct connections.
 - Now Gigabit Ethernet interfaces can automatically cross over with standard cable.
- Avoid mixing standards:
 - Both are common.
 - T568A mandated for US government and by TIA 570 residential cabling standard.

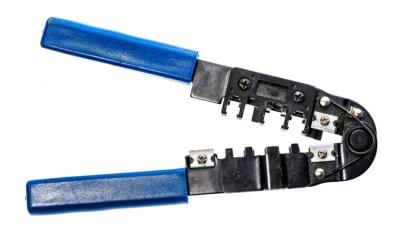
Patch Panels and Structured Cabling (Slide 1 of 2)


- Gigabit Ethernet: no more than 100 m of cable between switch and computer
- Solid cabling:
 - Single thick wire for permanent links to a patch panel, aka "drop cables"
 - Links RJ-45 port on wall plate with patch panel
 - Terminates in Insulation Displacement Connectors (IDC)
- Patch cord connects RJ-45 port on panel to port on switch
 - Stranded cable (thin wires; flexible, less efficient)
 - 5 m maximum length
- Second patch cord from computer to wall
- The use of patch cords, solid cabling and a patch panel together is known as a Structured cabling system (common in office environments)

Patch Panels and Structured Cabling (Slide 2 of 2)

Cable Installation and Testing Tools (Slide 1 of 7)

• Wire stripper/cutter: for cutting wire and stripping insulation and cable jackets.


Cable Installation and Testing Tools (Slide 2 of 7)

• Punch-down tool: fixes conductors into an IDC.

Cable Installation and Testing Tools (Slide 3 of 7)

• Crimpers: fix a jack into a cable.

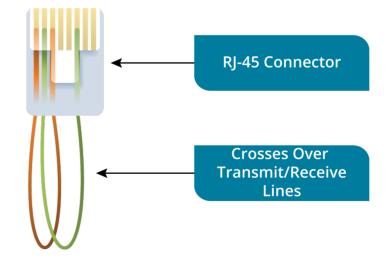
Cable Installation and Testing Tools (Slide 4 of 7)

- Cable testing:
 - Verify wiring installation and termination just after making connections, with access to cable runs.
 - Simpler than during user device setup.
 - Consider:
 - Patch cord between PC and wall.
 - Wall port and wall cabling.
 - Port on patch panel and patch cord to switch port.
 - Test with a known good cable.
 - Various troubleshooting devices.

Cable Installation and Testing Tools (Slide 5 of 7)

- Multimeter: basic cable testing tool; tests for copper wire continuity, existence of short, integrity of terminator.
- Wire map tester: identifies transpositions (wire crossovers) and reverse pairs.
- Advanced testers: show cable's physical/electrical properties.
- Certifiers: test and certify installation to a category.

Multimeter


Cable tester

Cable Installation and Testing Tools (Slide 6 of 7)

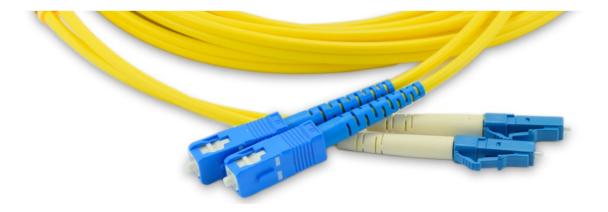
- Tone generator and probe (aka "fox and hound"; "tone and probe"): traces cable from end to end (follows signal through walls, vents. Bad labeling fix)
- Connect generator to wires, move locator over cable group until beep is loudest.

Cable Installation and Testing Tools (Slide 7 of 7)

- Loopback plug: tests a port
- Connects pin 1 to pin 3 and pin 2 to pin 6

Fiber Optic Cabling and Connectors (Slide 1 of 3)

- Electrical signals on copper wire subject to interference/attenuation.
- Light signals on fiber optic cable resist interference, eavesdropping, attenuation.
- Supports higher bandwidth, longer cable runs.



Fiber Optic Cabling and Connectors (Slide 2 of 3)

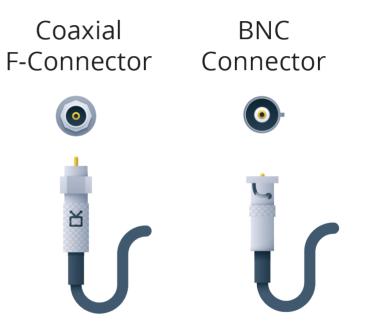
- Single-Mode Fiber (SMF)
 - Small core, long wavelength, near-infrared signal generated by laser.
 - Data rates up to 10 Gbps or more; cable runs of many kilometers (suitable for WANs).
- Multi-Mode Fiber (MMF)
 - Larger core, shorter wavelength.
 - Less expensive optics, less expensive deployment.
 - Lower signaling speeds, shorter distances (suitable for LANs).

Fiber Optic Cabling and Connectors (Slide 3 of 3)

- Connector types:
 - Straight Tip (ST), Subscriber Connector (SC), Lucent/Local Connector (LC).
 - Patch cords can have same or mixed connectors.
 - Connectors damage easily; plug/unplug only when needed.

Coaxial Cabling and Connectors (Slide 1 of 4)

- Two conductors share the same axis to reduce interference.
- Signal conductor insulated; second wire mesh conductor acts as EMI shield and as ground.



Coaxial Cabling and Connectors (Slide 2 of 4)

- Radio Grade (RG) "standard"; developed by US military, categorizes cable by thickness and impedance (opposition to current flow).
 - RG-6: thicker core, better quality, often used as drop/patch cable in modern CATV and broadband.
 - RG-59: thinner core; drop cable for older CATV/cable modems; used in CCTV.
- Coax also available with tri- or quad-shielding.

Coaxial Cabling and Connectors (Slide 3 of 4)

- BNC connectors at cable ends in most cases.
- BNC couplers can connect cables .
- Impedance of connector must match cable type (50 or 75 ohm).
- Also screw-down F-connectors.

Coaxial Cabling and Connectors (Slide 4 of 4)

- 10BASE-5/Thicknet and 10BASE-2/Thinnet supported 10 Mbps, up to 500 m and 185 m, respectively.
- Coax now obsolete for LANs; in use for CCTV and drop cables for CATV and Internet.
- Hybrid Fiber Coax (HFC): Coax links fiber trunk in street to customer cable modem.
- Less attenuation that TP but bulkier, harder to install.

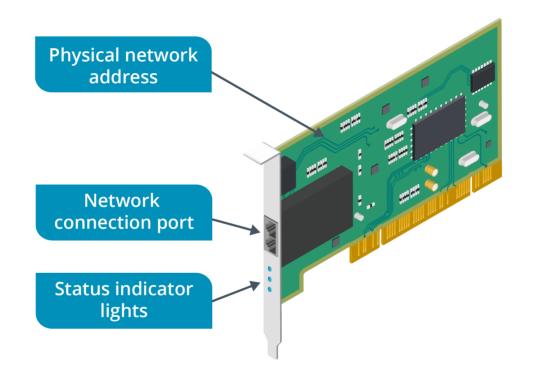
Activity

Network Interface Cards (Slide 1 of 2)

- Network Interface Card (NIC) port provides connection to network media.
- Data signals must come in regular units with consistent format.
- Each node must be able to address other nodes.
- Ethernet data link protocol provides addressing, framing functions.
- Several encoding mechanisms; NIC transceiver transmits and sends in agreed frame format.

Network Interface Cards (Slide 2 of 2)

- Construction of a frame:
 - "expect new frame soon"
 checksum value to compare


 V
 V

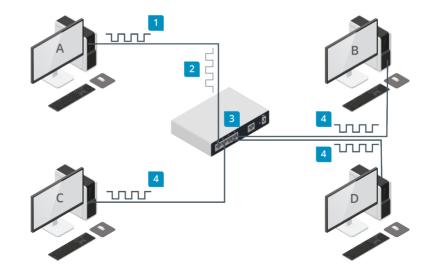
 Preamble
 Destination Address
 Source Address
 Payload
 Error Checking

Ethernet NIC Features (Slide 1 of 4)

- Usually on board the motherboard.
- May be PCIe expansion board.
- All onboard cards support copper-based Ethernet with RJ-45 ports.
- Expansion cards may support:
 - Fiber optic.
 - Multiple port types.
 - Multiple ports of same type (can be bonded for higher-speed link).

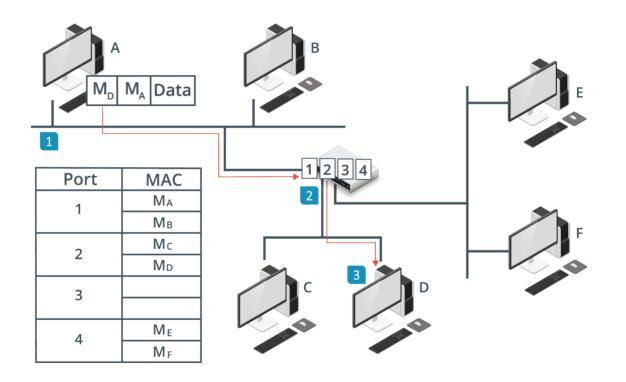
Ethernet NIC Features (Slide 2 of 4)

Ethernet NIC Features (Slide 3 of 4)


- MAC address: unique address for each Ethernet adapter port.
- Provides value for frame source and destination fields.
- 48 bits/6 bytes.
- Shown as 12 hex digits:
 - May have colon, hyphen, or no separator.
 - Examples: 00:60:8c:12:3a:bc or 00608c123abc.

Ethernet NIC Features (Slide 4 of 4)

- LED status lights show connection status (right above RJ-45 port):
 - Link light shows if network signal present.
 - Activity light flickers when packets received/sent.
 - Speed light possible on multi-speed adapters.
 - Dual-color LEDs combine functions.


Legacy Networking Devices (Slide 1 of 2)

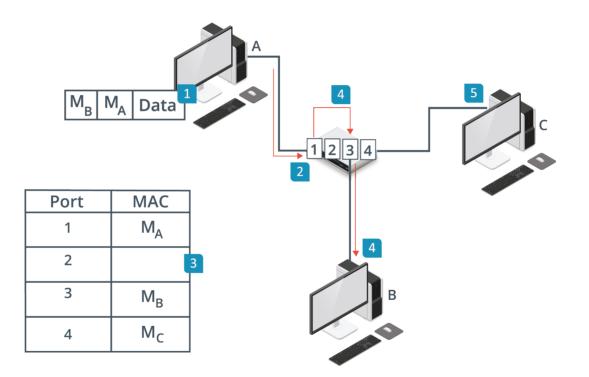
- Switch is appliance at core of modern networks.
- Legacy appliances include:
 - Hub: center of Ethernet star topology, works as multiport repeater for signals.
 - Repeater: retransmits signal to overcome distance limitations.
 - Bridge: divides network into segments (collision domains) to reduce contention and collision.

Legacy Networking Devices (Slide 2 of 2)

- Bridge operation:
- To D, from A

Switches (Slide 1 of 3)

• Ethernet switch in modern network acts like hub, repeater, and bridge.



Switches (Slide 2 of 3)

- Microsegmentation:
 - Switches have up to 48 ports.
 - Multiple switches can connect into switched fabric with thousands of ports.
 - Each port is separate collision domain.
 - Establishes point-to-point link (virtual circuit) between any two nodes.
 - Collisions only occur if port is half-duplex (attached to a legacy card or node).
 - Collisions only affect that segment, not the whole network.

Switches (Slide 3 of 3)

• Switch operation:

Managed and Unmanaged Switches (Slide 1 of 3)

- Unmanaged switch:
 - Performs microsegmentation without configuration.
 - May be found in small networks (4 or 8 port switches).
 - Embedded in most ISP's Internet routers/modems.
- Managed switch (either web interface or command line):
 - For larger workgroups and corporate networks.
 - Unmanaged out of the box, but can be configured administratively.
 - Can provide thousands of access ports by linking switches.
 - Can divide into virtual LANs (VLANs).

Managed and Unmanaged Switches (Slide 2 of 3)

Cisco Catalyst 9400 Series modular chassis

Managed and Unmanaged Switches (Slide 3 of 3)

Interface configuration on a Cisco switch

FastEthernet1/0/1 is up, line protocol is up (connected) Hardware is Fast Ethernet, address is f41f.c253.7103 (bia f41f.c253.7103) MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA. loopback not set Keepalive set (10 sec) Full-duplex, 100Mb/s, media type is 10/100BaseTX input flow-control is off, output flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:00:51, output 00:00:00, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output gueue: 0/40 (size/max) 5 minute input rate 0 bits/sec. 0 packets/sec 5 minute output rate 0 bits/sec. 0 packets/sec 18 packets input, 1758 bytes, 0 no buffer Received 4 broadcasts (2 multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 2 multicast, 0 pause input 0 input packets with dribble condition detected 111 packets output, 13828 bytes, 0 underruns 0 output errors, 0 collisions, 1 interface resets 0 unknown protocol drops

Power Over Ethernet (PoE)

- Supplies power from a switch port over Cat 5 or better to a powered device.
- Two IEEE standards (both now in 802.3-2012):
 - 802.3af
 - 802.3at (PoE+)
- PoE-enabled switches called end-span/end-point PSE.
- Power injector can be used if switch does not support PoE.
- Switch detects if connected device is PoE-enabled.
- More efficient than powering each device through a wall socket.
- Network-management software can control devices, apply power schemes.

Ethernet Over Power (Slide 1 of 2)

- SOHO networks are unstructured, use a single router, incorporate smart appliances.
- Wireless is obvious solution; WLAN bandwidth may be adequate.
- There may be interference issues or appliances may not support Wi-Fi.
- Ethernet over Powerline uses building power circuits; overlays carrier signal to transfer Ethernet frames.
- Adapter plugs into electrical outlet; provides RJ-45 ports.
- No configuration needed, but security can be configured.
- Standards defined by IEEE 1901, managed by HomePlug Powerline Alliance.

Ethernet Over Power (Slide 2 of 2)

Netgear Powerline AV200 adapters

Activity

Discussing Network Hardware Devices Hub vs Switch vs Router:

https://www.youtube.com/watch?v=1z0ULvg_pW8

What is Wireless Networking?

- A range of connectivity products and devices.
- Personal area networking to Internet connectivity.
- Usually uses radio waves for transmission, tuned to specific frequency.

Wireless Frequencies and Channels (Slide 1 of 4)

- RF ranges from 3 KHz to 300 GHz
- Subdivided into bands (FM radio and TV are VHF band)
- Radio spectrum use regulated by governments
- Standardized by ITU (International Telecom Union)
- Frequency use requires a license
- Some unregulated frequencies

Wireless Frequencies and Channels (Slide 2 of 4)

- IEEE 802.11 standards = Wi-Fi
 - (Transfer rates for optimal installation; frequencies lack penetration; may be interference; data rate may drop with distance.)

Standard	Maximum Transfer Rate	Band
802.11a (1999)	54 Mbps	5 GHz
802.11b (1999)	11 Mbps	2.4 GHz
802.11g (2003)	54 Mbps	2.4 GHz
802.11n (2009)	288.8 Mbps/stream (Single Channel) 600 Mbps/stream (Bonded Channels)	2.4/5 GHz
802.11ac (2013)	1.7 Gbps (at time of writing)	5 GHz

Wireless Frequencies and Channels (Slide 3 of 4)

- Two most common frequency bands in 802.11:
 - 2.4 GHz:
 - Longer wavelength, longer range, propagates better through solids
 - Does not support many individual channels; is often congested
 - · Increased risk of interference
 - · Achievable data rates less than 5 GHz
 - 5 GHz:
 - Less effective at solid surface penetration
 - Lower range than 2.4 GHz
 - More individual channels; less congestion
 - Higher data rates

Wireless Frequencies and Channels (Slide 4 of 4)

- Range:
 - 2.4 GHz: maximum indoor range ~30-45 m (100–150 ft).
 - 5 GHz: maximum indoor range up to ~30 m.
 - Absolute range less important than number of clients to support and wall/ceiling construction.
- Channels:
 - 2.4 GHz: up to 14 channels, considerable overlap, co-channel interference.
 - Special codes distinguish pattern of each node.
 - Channel can become saturated.
 - 5 GHz: 23 non-overlapping channels:
 - More WANs in same area or access points closer together, higher client device density.

Wireless Network Standards (Slide 1 of 2)

- 802.11a/b/g considered legacy standards, limited to old equipment
 - 802.11b/g were more successful
 - Both worked at 2.4 GHz; 802.11b WLANs upgraded to 802.11G
 - 802.11a works at 5 GHz; incompatible

Wireless Network Standards (Slide 2 of 2)

Standard	Description
802.11n	 More bandwidth than legacy standards. Multiplexes 2-4 antennas using MIMO. AxB:C notation (transmit antennas, receive antennas, simultaneous streams). Can use 2.4 GHz or 5 GHz band (preferred). Can use channel bonding in 5 GHz band to deliver more bandwidth. Nominal data rates 288.8 Mbps (single channel) and 600 Mbps (bonded channels).
802.11ac	 Continues development of 802.11n. Works in 5 GHz range. Can use 2.4GHz range for legacy standards in mixed mode. Aims for throughput comparable to Gigabit Ethernet. Supports channel bonding to 80 or 160 MHz channels; 8 special streams vs. 4; denser modulation. Needs high-end equipment for sufficient antennas for 8 streams. Theoretical data rate with 8 streams and 160 MHz channel bonding ~6.93 Gbps.

Access Points and Wireless Network Modes (Slide 1 of 3)

- Most Wi-Fi networks are Infrastructure mode
- Each client connects with an Access Point (AP)
- Forms Basic Service Set (BSS)
- MAC address of AP is BSSID
- Can group BSS's = ESS
- AP is bridge between wired/wireless network (Distribution System)
- AP connects to network like a host computer

Access Points and Wireless Network Modes (Slide 2 of 3)

- Access points can forward frames in a Wireless Distribution System (WDS):
 - Extends network without a cabled backbone.
 - Bridge mode and repeater mode.
 - Can be complex; can be compatibility issues with different vendors' devices.
- Range extender is simpler residential solution; can work with powerline adapter.

Access Points and Wireless Network Modes (Slide 3 of 3)

Configuration	Description
Ad-hoc and Wi-Fi Direct	 Stations configured to make direct peer-to-peer connections. Older standards: ad-hoc mode. Modern approach: Wi-Fi Direct.
Wireless Mesh Network (MSN)	 Part of 802.11s standard. Nodes (Mesh Stations) can discover each other and make peer connections to form Mesh Basic Service Set. Mesh stations perform path discovery and forwarding. Routing protocol such as Hybrid Wireless Mesh Protocol (HWMP).
Personal Area Network (PAN)	Using wireless connectivity to connect to devices with a few meters.Printers, smartphones, headsets, etc.

Wireless Network Cards

- Each Wi-Fi network station needs network adapter compatible with 802.11 standard in use on network.
- Onboard adapters; expansion boards; USB-connected adapters.
- Link-layer MAC address like Ethernet cards.

Activity

